Sains Malaysiana 54(2)(2025): 517-534

http://doi.org/10.17576/jsm-2025-5402-17

 

Peat Water Purification using Pahae Natural Zeolite and Activated Carbon Derived from Candlenut Shell (Aleurites moluccana)

(Pembersihan Air Gambut menggunakan Zeolit Semula Jadi Pahae dan Karbon Teraktif Diperoleh daripada Tempurung Kemiri (Aleurites moluccana))

 

SUSILAWATI SUSILAWATI*, SARLENNI T PADANG, ERNA FRIDA, PERDINAN SINUHAJI, ANDRIYANI ANDRIYANI, MUTIA IRMA

 

Department of Physics, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, 20155, Indonesia

 

Diserahkan: 24 Ogos 2024/Diterima: 19 November 2024

 

Abstract

The escalating demand for freshwater due to the increased global population and intensified industrial activities necessitates innovative approaches to water treatment. This study explores the efficacy of a novel composite adsorbent material consisting of Pahae natural zeolite and activated carbon derived from candlenut shells for purifying peat water. This research synthesizes and evaluates the composite under varying conditions to determine its potential as an effective adsorbent material. Characterization methods included X-ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Brunauer-Emmett-Teller (BET) and physical properties of adsorbent. The results demonstrated that the 80:20% zeolite to activated carbon ratio exhibited the highest porosity of 56.49% and a significant water absorption capacity of 53.65%. This composition also achieved the most peat water substantial purification lowering the initial turbidity, pH, color, iron and manganese concentration from 175.4 TCU, 31.32 NTU, pH 5, 1.44 mg/L, and 0.76 mg/L to 41.7 TCU, 11.24 NTU, pH 6.8, 0.242 mg/L, and 0.020 mg/L. SEM analyses showed a more porous surface morphology at 80:20% which corroborated with the higher purification of peat water. The adsorption mechanisms involving physical adsorption due to pore size were integral as the adsorbent in capturing contaminants. The findings suggest that such adsorbent can be tailored to improve performance and provide a viable solution to the global freshwater scarcity challenge.

Keywords: Activated carbon; adsorbent; natural zeolite; peat water; water treatment

 

Abstrak

Permintaan air tawar yang semakin meningkat berikutan pertambahan penduduk global dan aktiviti perindustrian yang semakin giat memerlukan pendekatan inovatif untuk rawatan air. Penyelidikan ini mengkaji keberkesanan bahan penjerap komposit baharu yang terdiri daripada zeolit asli Pahae dan karbon teraktif yang diperoleh daripada cengkerang kemiri untuk menulenkan air gambut. Penyelidikan ini mensintesis dan menilai komposit dalam keadaan yang berbeza-beza untuk menentukan potensinya sebagai bahan penjerap yang berkesan. Kaedah pencirian termasuk pendarfluor sinar-X (XRF), mikroskop elektron pengimbasan (SEM), tenaga penyerakan sinar-X (EDX), pembelauan sinar-X (XRD), transformasi Fourier inframerah (FTIR), Brunauer-Emmett-Teller (BET) dan sifat fizikal penjerap. Keputusan menunjukkan bahawa nisbah 80:20% zeolit kepada karbon teraktif menunjukkan keliangan tertinggi sebanyak 56.49% dan kapasiti penyerapan air yang ketara sebanyak 53.65%. Komposisi ini juga mencapai penulenan besar air gambut yang paling banyak dengan merendahkan kekeruhan awal, pH, warna, besi dan kepekatan mangan daripada 175.4 TCU, 31.32 NTU, pH 5, 1.44 mg/L dan 0.76 mg/L kepada 41.7 TCU, 11.24 NTU, pH 6.8, 0.242 mg/L dan 0.020 mg/L. Analisis SEM menunjukkan morfologi permukaan yang lebih berliang pada 80:20% yang disokong dengan penulenan air gambut yang lebih tinggi. Mekanisme penjerapan yang melibatkan penjerapan fizikal disebabkan saiz liang adalah penting sebagai penjerap dalam menangkap bahan cemar. Keputusan menunjukkan bahawa penjerap tersebut boleh disesuaikan untuk meningkatkan prestasi dan menyediakan penyelesaian yang berdaya maju kepada cabaran kekurangan air tawar global.

Kata kunci: Air gambut; karbon teraktif; penjerap; rawatan air; zeolit asli

 

RUJUKAN

Abdul Rahman, N., Jose Jol, C., Albania Linus, A., Kwong Ming, C., Arif, P., Baharuddin, N., Wan Borhan, W.W.S., Abdul Jalal, N.S., Samsul, S.N.A., Abdul Mutalip, N., Jitai, A.A. & Abang Abdul Hamid, D.F.A. 2023. Treatment of tropical peat water in Sarawak peatlands nature reserve by utilising a batch electrocoagulation system. Sustainable Chemistry for the Environment 4: 100043. https://doi.org/https://doi.org/10.1016/j.scenv.2023.100043

Alfatah, T., Mistar, E.M., Syabriyana, M. & Supardan, M.D. 2022. Advances in oil palm shell fibre reinforced thermoplastic and thermoset polymer composites. Alexandria Engineering Journal 61(6): 4945-4962. https://doi.org/https://doi.org/10.1016/j.aej.2021.09.061

Ali, F., Lestari, D.L., & Putri, M.D. 2021. Peat water treatment as an alternative for raw water in peatlands area. IOP Conference Series: Materials Science and Engineering 1144: 012052. https://doi.org/10.1088/1757-899X/1144/1/012052

Anas, M., Napirah, M., Ilmawati, W.O.S., Husein, Takda, A., Herawati, L. & Sari, K. 2024. The utilization of candlenut shell-based activated charcoal as the electrode of capacitive deionization (CDI) for seawater desalination. Science and Technology Indonesia 9(1): 86-93. https://doi.org/10.26554/sti.2024.9.1.86-93

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E. & Husnain, S. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402: 115235. https://doi.org/https://doi.org/10.1016/j.geoderma.2021.115235

Calabrese, L. 2019. Anticorrosion behavior of zeolite coatings obtained by in situ crystallization: A critical review. Materials (Basel) 12(1): 12010059.

de Magalhães, L.F., da Silva, G.R., Peres, A.E.C. & Kooh, M.R.R. 2022. Zeolite application in wastewater treatment. Adsorption Science & Technology 2022: 4544104. https://doi.org/10.1155/2022/4544104

Fatimah, I., Citradewi, P.W., Iqbal, R.M., Ghazali, S.A.I.S.M., Yahya, A. & Purwiandono, G. 2023. Geopolymer from tin mining tailings waste using Salacca leaves ash as activator for dyes and peat water adsorption. South African Journal of Chemical Engineering 43: 257-265. https://doi.org/https://doi.org/10.1016/j.sajce.2022.11.008

Khaleque, A., Alam, M.M., Hoque, M., Mondal, S., Haider, J.B., Xu, B., Johir, M.A.H., Karmakar, A.K., Zhou, J.L., Ahmed, M.B. & Moni, M.A. 2020. Zeolite synthesis from low-cost materials and environmental applications: A review. Environ. Adv. 2: 100019.

Kithinji Kinoti, I., Ogunah, J., Muturia M’Thiruaine, C. & Marangu, J.M. 2022. Adsorption of heavy metals in contaminated water using zeolite derived from agro-wastes and clays: A review. Journal of Chemistry 2022: 4250299. https://doi.org/https://doi.org/10.1155/2022/4250299

Kordala, N. & Wyszkowski, M. 2024. Zeolite properties, methods of synthesis, and selected applications. Molecules 29(5): 1069. https://doi.org/10.3390/molecules29051069

Li, S-Y., Huo, Y-J., Yan, T., Zhang, H., Wang, L-W. & Pan, W-G. 2024. Preparation and thermal properties of zeolite/MgSO4 composite sorption material for heat storage. Renewable Energy 224: 120166. https://doi.org/https://doi.org/10.1016/j.renene.2024.120166

Luo, J., Yuan, H., Liu, H., Li, J., Wang, Y., Wang, Y., Yao, J. & Li, H. 2021. One-pot Baeyer–Villiger oxidation of cyclohexanone with in situ generated hydrogen peroxide over Sn-Beta zeolites. Green Chemical Engineering 2(3): 294-300. https://doi.org/https://doi.org/10.1016/j.gce.2021.03.003

Mariana, M., Mistar, E.M., Syabriyana, M., Zulkipli, A.S., Aswita, D. & Alfatah, T. 2022. Properties and adsorptive performance of candlenut shell and its porous charcoals for aqueous mercury(II) removal. Bioresource Technology Reports 19: 101182. https://doi.org/https://doi.org/10.1016/j.biteb.2022.101182

Mariana, M., Mistar, E.M., Alfatah, T. & Supardan, M.D. 2021. High-porous activated carbon derived from Myristica fragrans shell using one-step KOH activation for methylene blue adsorption. Bioresource Technology Reports 16: 100845. https://doi.org/https://doi.org/10.1016/j.biteb.2021.100845

Martín, C., Moure, A., Martín, G., Carrillo, E., Domínguez, H. & Parajó, J.C. 2010. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential feedstocks for biodiesel production in Cuba. Biomass and Bioenergy 34(4): 533-538. https://doi.org/https://doi.org/10.1016/j.biombioe.2009.12.019

Mistar, E.M., Ahmad, S., Muslim, A., Alfatah, T. & Supardan, M.D. 2018. Preparation and characterization of a high surface area of activated carbon from Bambusa vulgaris—Effect of NaOH activation and pyrolysis temperature. IOP Conference Series: Materials Science and Engineering 334: 012051. https://doi.org/10.1088/1757-899X/334/1/012051

Muliani, S., Zakir, M. & Fauziah, S. 2023. Surface modification of activated carbon derived from candlenut shell (Aleurites moluccana) by HNO3 and its application as an adsorbent of methyl orange dyes. Egyptian Journal of Chemistry 66(9): 27-36. https://doi.org/10.21608/EJCHEM.2022.149651.6476

Nasir, S., Sambeghana, D.Y.N., Purbalesmana, F., Rendana, M., Nukman & Ibrahim, E. 2024. Peat water treatment using biocoagulant and ceramic membrane. Desalination and Water Treatment 320: 100608. https://doi.org/https://doi.org/10.1016/j.dwt.2024.100608

Nasution, T.I., Susilawati, Zebua, F., Nainggolan, H. & Nainggolan, I. 2015. Manufacture of water vapour filter based on natural Pahae zeolite used for hydrogen fueled motor cycle. Appl. Mech. Mater. 754-755: 789-793.

Patabang, D., Siang, J.T. & Basri. 2021. Co-combustion characteristics of low-rank coal mixed with candlenut shell by using thermogravimetry analysis - differential thermal analysis. IOP Conference Series: Materials Science and Engineering 1034: 012046. https://doi.org/10.1088/1757-899X/1034/1/012046

Qadafi, M., Notodarmojo, S. & Zevi, Y. 2020. Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes. Science of The Total Environment 747: 141540. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141540

Rangel-Mendez, J.R. & Streat, M. 2002. Adsorption of cadmium by activated carbon cloth: Influence of surface oxidation and solution pH. Water Research 36(5): 1244-1252. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00343-8

Saad, M.J., Hua, C.C., Misran, S., Zakaria, S., Sajab, M.S. & Abdul Rahman, M.H. 2020a. Rice husk activated carbon with NaOH activation: Physical and chemical properties. Sains Malaysiana 49(9): 2261-2267. https://doi.org/10.17576/jsm-2020-4909-23

Saad, M.J., Sajab, M.S., Busu, W.N.W., Misran, S., Zakaria, S., Chin, S.X. & Chia, C.H. 2020b. Comparative adsorption mechanism of rice straw activated carbon activated with NaOH and KOH. Sains Malaysiana 49(11): 2721-2734. https://doi.org/10.17576/jsm-2020-4911-11

Shoumkova, A. & Stoyanova, V. 2013. Zeolites formation by hydrothermal alkali activation of coal fly ash from thermal power station “Maritsa 3”, Bulgaria. Fuel 103: 533-541. https://doi.org/https://doi.org/10.1016/j.fuel.2012.07.076

Sihombing, Y.A., Sinaga, M.Z.E., Hardiyanti, R., Susilawati, Saragi, I.R. & Rangga. 2022. Preparation, characterization, and desalination study of polystyrene membrane integrated with zeolite using the electrospinning method. Heliyon 8(8): e10113. https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10113

Sudibandriyo, M. & Putri, F.A. 2020. The effect of various zeolites as an adsorbent for bioethanol purification using a fixed bed adsorption column. Int. J. Technol. 11: 1300.

Susilawati, Sihombing, Y.A., Rahayu, S.U., Sembiring, Y.Y.B., Waldiansyah, L. & Irma, M. 2023. Filter material based on zeolite-activated charcoal from cocoa shells as ammonium adsorbent in greywater treatment. South African Journal of Chemical Engineering 43: 266-272. https://doi.org/https://doi.org/10.1016/j.sajce.2022.11.006

Susilawati, Sihombing, Y.A., Rahayu, S.U., Waldiansyah, L. & Sembiring, Y.Y.B. 2022. The effectiveness of Pahae natural zeolite–cocoa shell activated charcoal nanofilter as a water adsorber in bioethanol purification. ACS Omega 7(43): 38417-38425. https://doi.org/10.1021/acsomega.2c03614

Susilawati, Nasruddin, M.N., Sihombing, Y.A., Pakpahan, S.N.Y. & Ferdiansyah, B. 2021. Preparation of Pahae natural zeolite nanoparticles using high energy milling and its potential for bioethanol purification. Rasayan J. Chem. 14: 1265.

Susilawati, Nasruddin, M.N., Kurniawan, C., Nainggolan, I. & Sihombing, Y.A. 2018. Ethanol purification using active natural Pahae zeolite by adsorption distillation method. J. Phys. Conf Ser. 1116: 032037.

Susilawati, Nasution, T.I., Zebua, F. & Nainggolan, H. 2017. Hydrogen purification using natural Pahae zeolit and cocoa rind based filter. Int. J. Appl. Eng. Res. 12: 3914.

Syafalni, S., Abustan, I., Brahmana, A., Zakaria, S.N.F. & Abdullah, R. 2013. Peat water treatment using combination of cationic surfactant modified zeolite, granular activated carbon, and limestone. Modern Applied Science 7(2): 39-49. https://doi.org/10.5539/mas.v7n2p39

Utama, P.S., Olivia, M., Prawiranegara, B.A., Agusti, I.D., Pinem, J.A., Darmayanti, L. & Saputra, E. 2020. Peat water treatment by adsorption using kaolin-based geopolymer. IOP Conference Series: Materials Science and Engineering 845: 012008. https://doi.org/10.1088/1757-899X/845/1/012008

Vasconcelos, A.A., Len, T., de Oliveira, A.d.N., da Costa, A.A.F., da Silva Souza, A.R., da Costa, C.E.F., Luque, R., da Rocha Filho, G.N., Noronha, R.C.R. & do Nascimento, L.A.S. 2023. Zeolites: A theoretical and practical approach with uses in (bio)chemical processes. Applied Sciences 13(3): 1897. https://doi.org/10.3390/app13031897

Wenten, I.G., Khoiruddin, K., Wardani, A.K., Aryanti, P.T.P., Astuti, D.I. & Komaladewi, A.A.I.A.S. 2020. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method for peat water treatment. Journal of Water Process Engineering 34: 101158. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101158

Wibowo, E., Rokhmat, M., Sutisna, Khairurrijal & Abdullah, M. 2017. Reduction of seawater salinity by natural zeolite (Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 409: 146-156. https://doi.org/https://doi.org/10.1016/j.desal.2017.01.026

Wösten, J.H.M., Clymans, E., Page, S.E., Rieley, J.O. & Limin, S.H. 2008. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73(2): 212-224. https://doi.org/https://doi.org/10.1016/j.catena.2007.07.010

Xiao, G., Chen, X., Li, T., Wang, C., Cui, Q. & Yue, Y. 2024. Eco-friendly synthesis and environmental impact assessment of hierarchical Beta zeolite from kaolinite and recycled mother liquor. Green Chemical Engineering 5(4): 501-510. https://doi.org/https://doi.org/10.1016/j.gce.2024.01.002

Xu, J., Morris, P.J., Liu, J. & Holden, J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. CATENA 160: 134-140.
https://doi.org/https://doi.org/10.1016/j.catena.2017.09.010

Zarrintaj, P., Mahmodi, G., Manouchehri, S., Mashhadzadeh, A.H., Khodadadi, M., Servatan, M., Ganjali, M.R., Azambre, B., Kim, S-J., Ramsey, J.D., Habibzadeh, S., Saeb, M.R. & Mozafari, M. 2020. Zeolite in tissue engineering: Opportunities and challenges. MedComm. 1(1): 5-34.

 

*Pengarang untuk surat-menyurat; email: susilawati@usu.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya