Sains Malaysiana 54(2)(2025): 517-534
http://doi.org/10.17576/jsm-2025-5402-17
Peat Water
Purification using Pahae Natural Zeolite and
Activated Carbon Derived from Candlenut Shell (Aleurites moluccana)
(Pembersihan Air Gambut menggunakan Zeolit Semula Jadi Pahae dan Karbon Teraktif Diperoleh daripada Tempurung Kemiri (Aleurites moluccana))
SUSILAWATI
SUSILAWATI*, SARLENNI T PADANG, ERNA FRIDA, PERDINAN SINUHAJI, ANDRIYANI ANDRIYANI, MUTIA IRMA
Department of
Physics, Faculty of Mathematics and Natural Science, Universitas Sumatera Utara, Medan, 20155, Indonesia
Diserahkan: 24 Ogos 2024/Diterima: 19 November 2024
Abstract
The escalating demand for freshwater due to the increased global
population and intensified industrial activities necessitates innovative
approaches to water treatment. This study explores the efficacy of a novel
composite adsorbent material consisting of Pahae natural zeolite and activated carbon derived from candlenut shells for
purifying peat water. This research synthesizes and evaluates the composite
under varying conditions to determine its potential as an effective adsorbent
material. Characterization methods included X-ray fluorescence (XRF), scanning
electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD),
Fourier Transform Infrared (FTIR), Brunauer-Emmett-Teller
(BET) and physical properties of adsorbent. The results demonstrated that the
80:20% zeolite to activated carbon ratio exhibited the highest porosity of
56.49% and a significant water absorption capacity of 53.65%. This composition
also achieved the most peat water substantial purification lowering the initial
turbidity, pH, color, iron and manganese
concentration from 175.4 TCU, 31.32 NTU, pH 5, 1.44 mg/L, and 0.76 mg/L to 41.7
TCU, 11.24 NTU, pH 6.8, 0.242 mg/L, and 0.020 mg/L. SEM analyses showed a more
porous surface morphology at 80:20% which corroborated with the higher
purification of peat water. The adsorption mechanisms involving physical
adsorption due to pore size were integral as the adsorbent in capturing
contaminants. The findings suggest that such adsorbent can be tailored to
improve performance and provide a viable solution to the global freshwater
scarcity challenge.
Keywords: Activated carbon; adsorbent;
natural zeolite; peat water; water treatment
Abstrak
Permintaan air tawar yang semakin meningkat berikutan pertambahan penduduk global dan aktiviti perindustrian yang semakin giat memerlukan pendekatan inovatif untuk rawatan air. Penyelidikan ini mengkaji keberkesanan bahan penjerap komposit baharu yang terdiri daripada zeolit asli Pahae dan karbon teraktif yang diperoleh daripada cengkerang kemiri untuk menulenkan air gambut. Penyelidikan ini mensintesis dan menilai komposit dalam keadaan yang berbeza-beza untuk menentukan potensinya sebagai bahan penjerap yang berkesan. Kaedah pencirian termasuk pendarfluor sinar-X (XRF), mikroskop elektron pengimbasan (SEM), tenaga penyerakan sinar-X (EDX), pembelauan sinar-X (XRD), transformasi Fourier inframerah (FTIR), Brunauer-Emmett-Teller (BET) dan sifat fizikal penjerap.
Keputusan menunjukkan bahawa nisbah 80:20% zeolit kepada karbon teraktif menunjukkan keliangan tertinggi sebanyak 56.49% dan kapasiti penyerapan air yang ketara sebanyak 53.65%. Komposisi ini juga mencapai penulenan besar air gambut yang paling banyak dengan merendahkan kekeruhan awal, pH, warna, besi dan kepekatan mangan daripada 175.4 TCU, 31.32 NTU, pH 5, 1.44 mg/L dan 0.76
mg/L kepada 41.7 TCU, 11.24 NTU, pH 6.8, 0.242 mg/L
dan 0.020 mg/L. Analisis SEM menunjukkan morfologi permukaan yang lebih berliang pada 80:20% yang disokong dengan penulenan air gambut yang lebih tinggi. Mekanisme penjerapan yang melibatkan penjerapan fizikal disebabkan saiz liang adalah penting sebagai penjerap dalam menangkap bahan cemar. Keputusan menunjukkan bahawa penjerap tersebut boleh disesuaikan untuk meningkatkan prestasi dan menyediakan penyelesaian yang berdaya maju kepada cabaran kekurangan air tawar global.
Kata kunci: Air gambut; karbon teraktif;
penjerap; rawatan air; zeolit asli
RUJUKAN
Abdul Rahman, N., Jose Jol,
C., Albania Linus, A., Kwong Ming, C., Arif, P., Baharuddin, N., Wan Borhan, W.W.S., Abdul Jalal, N.S., Samsul,
S.N.A., Abdul Mutalip, N., Jitai,
A.A. & Abang Abdul Hamid, D.F.A. 2023. Treatment
of tropical peat water in Sarawak peatlands nature reserve by utilising a batch
electrocoagulation system. Sustainable Chemistry for the Environment 4:
100043. https://doi.org/https://doi.org/10.1016/j.scenv.2023.100043
Alfatah, T., Mistar,
E.M., Syabriyana, M. & Supardan,
M.D. 2022. Advances in oil palm shell fibre reinforced thermoplastic and
thermoset polymer composites. Alexandria Engineering Journal 61(6):
4945-4962. https://doi.org/https://doi.org/10.1016/j.aej.2021.09.061
Ali, F., Lestari, D.L., & Putri, M.D.
2021. Peat water treatment as an alternative for raw water in peatlands area. IOP
Conference Series: Materials Science and Engineering 1144: 012052.
https://doi.org/10.1088/1757-899X/1144/1/012052
Anas, M., Napirah,
M., Ilmawati, W.O.S., Husein, Takda, A., Herawati, L.
& Sari, K. 2024. The utilization of candlenut shell-based activated
charcoal as the electrode of capacitive deionization (CDI) for seawater
desalination. Science and Technology Indonesia 9(1): 86-93.
https://doi.org/10.26554/sti.2024.9.1.86-93
Anda, M., Ritung,
S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E.
& Husnain, S. 2021. Revisiting tropical peatlands
in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402: 115235. https://doi.org/https://doi.org/10.1016/j.geoderma.2021.115235
Calabrese, L. 2019. Anticorrosion behavior of zeolite coatings obtained by in situ crystallization: A critical review. Materials (Basel) 12(1): 12010059.
de Magalhães,
L.F., da Silva, G.R., Peres, A.E.C. & Kooh,
M.R.R. 2022. Zeolite application in wastewater treatment. Adsorption Science
& Technology 2022: 4544104. https://doi.org/10.1155/2022/4544104
Fatimah, I., Citradewi,
P.W., Iqbal, R.M., Ghazali, S.A.I.S.M., Yahya, A. & Purwiandono,
G. 2023. Geopolymer from tin mining tailings waste using Salacca leaves ash as activator for dyes and peat water adsorption. South African
Journal of Chemical Engineering 43: 257-265.
https://doi.org/https://doi.org/10.1016/j.sajce.2022.11.008
Khaleque, A., Alam, M.M.,
Hoque, M., Mondal, S., Haider, J.B., Xu, B., Johir,
M.A.H., Karmakar, A.K., Zhou, J.L., Ahmed, M.B. &
Moni, M.A. 2020. Zeolite synthesis from low-cost materials and environmental
applications: A review. Environ. Adv. 2: 100019.
Kithinji Kinoti, I., Ogunah, J., Muturia M’Thiruaine, C. & Marangu,
J.M. 2022. Adsorption of heavy metals in contaminated water using zeolite
derived from agro-wastes and clays: A review. Journal
of Chemistry 2022: 4250299.
https://doi.org/https://doi.org/10.1155/2022/4250299
Kordala, N. & Wyszkowski,
M. 2024. Zeolite properties, methods of synthesis, and selected applications. Molecules 29(5): 1069. https://doi.org/10.3390/molecules29051069
Li, S-Y., Huo,
Y-J., Yan, T., Zhang, H., Wang, L-W. & Pan, W-G. 2024. Preparation and
thermal properties of zeolite/MgSO4 composite sorption material for
heat storage. Renewable Energy 224: 120166.
https://doi.org/https://doi.org/10.1016/j.renene.2024.120166
Luo, J., Yuan, H., Liu, H., Li, J., Wang,
Y., Wang, Y., Yao, J. & Li, H. 2021. One-pot Baeyer–Villiger oxidation of cyclohexanone with in situ generated hydrogen peroxide over
Sn-Beta zeolites. Green Chemical Engineering 2(3): 294-300.
https://doi.org/https://doi.org/10.1016/j.gce.2021.03.003
Mariana, M., Mistar,
E.M., Syabriyana, M., Zulkipli,
A.S., Aswita, D. & Alfatah,
T. 2022. Properties and adsorptive performance of candlenut shell and its
porous charcoals for aqueous mercury(II) removal. Bioresource
Technology Reports 19: 101182.
https://doi.org/https://doi.org/10.1016/j.biteb.2022.101182
Mariana, M., Mistar,
E.M., Alfatah, T. & Supardan,
M.D. 2021. High-porous activated carbon derived from Myristica fragrans shell using one-step KOH activation for
methylene blue adsorption. Bioresource Technology Reports 16: 100845.
https://doi.org/https://doi.org/10.1016/j.biteb.2021.100845
Martín, C., Moure,
A., Martín, G., Carrillo, E., Domínguez, H. & Parajó,
J.C. 2010. Fractional characterisation of jatropha, neem, moringa, trisperma, castor and candlenut seeds as potential
feedstocks for biodiesel production in Cuba. Biomass and Bioenergy 34(4): 533-538. https://doi.org/https://doi.org/10.1016/j.biombioe.2009.12.019
Mistar, E.M., Ahmad, S., Muslim, A., Alfatah, T. & Supardan, M.D.
2018. Preparation and characterization of a high surface area of activated
carbon from Bambusa vulgaris—Effect of
NaOH activation and pyrolysis temperature. IOP Conference Series: Materials
Science and Engineering 334: 012051.
https://doi.org/10.1088/1757-899X/334/1/012051
Muliani, S., Zakir, M. & Fauziah,
S. 2023. Surface modification of activated carbon derived from candlenut shell
(Aleurites moluccana)
by HNO3 and its application as an adsorbent of methyl orange dyes. Egyptian
Journal of Chemistry 66(9): 27-36.
https://doi.org/10.21608/EJCHEM.2022.149651.6476
Nasir, S., Sambeghana,
D.Y.N., Purbalesmana, F., Rendana,
M., Nukman & Ibrahim, E. 2024. Peat water
treatment using biocoagulant and ceramic membrane. Desalination
and Water Treatment 320: 100608.
https://doi.org/https://doi.org/10.1016/j.dwt.2024.100608
Nasution, T.I., Susilawati, Zebua, F., Nainggolan, H.
& Nainggolan, I. 2015. Manufacture of water
vapour filter based on natural Pahae zeolite used for
hydrogen fueled motor cycle. Appl. Mech. Mater. 754-755: 789-793.
Patabang, D., Siang, J.T. & Basri.
2021. Co-combustion characteristics of low-rank coal mixed with candlenut shell
by using thermogravimetry analysis - differential thermal analysis. IOP
Conference Series: Materials Science and Engineering 1034: 012046.
https://doi.org/10.1088/1757-899X/1034/1/012046
Qadafi, M., Notodarmojo,
S. & Zevi, Y. 2020. Effects of microbubble pre-ozonation time and pH on
trihalomethanes and haloacetic acids formation in
pilot-scale tropical peat water treatments for drinking water purposes. Science
of The Total Environment 747: 141540.
https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141540
Rangel-Mendez, J.R. & Streat, M. 2002. Adsorption of cadmium by activated carbon
cloth: Influence of surface oxidation and solution pH. Water Research 36(5): 1244-1252. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00343-8
Saad, M.J., Hua, C.C., Misran, S., Zakaria,
S., Sajab, M.S. & Abdul Rahman, M.H. 2020a. Rice
husk activated carbon with NaOH activation: Physical and chemical properties. Sains Malaysiana 49(9): 2261-2267. https://doi.org/10.17576/jsm-2020-4909-23
Saad, M.J., Sajab,
M.S., Busu, W.N.W., Misran, S., Zakaria, S., Chin,
S.X. & Chia, C.H. 2020b. Comparative adsorption mechanism of rice straw
activated carbon activated with NaOH and KOH. Sains Malaysiana 49(11): 2721-2734.
https://doi.org/10.17576/jsm-2020-4911-11
Shoumkova, A. & Stoyanova, V. 2013. Zeolites
formation by hydrothermal alkali activation of coal fly ash from thermal power
station “Maritsa 3”, Bulgaria. Fuel 103: 533-541. https://doi.org/https://doi.org/10.1016/j.fuel.2012.07.076
Sihombing, Y.A., Sinaga,
M.Z.E., Hardiyanti, R., Susilawati, Saragi, I.R. & Rangga.
2022. Preparation, characterization, and desalination study of polystyrene
membrane integrated with zeolite using the electrospinning method. Heliyon 8(8): e10113.
https://doi.org/https://doi.org/10.1016/j.heliyon.2022.e10113
Sudibandriyo, M. & Putri, F.A. 2020. The effect of
various zeolites as an adsorbent for bioethanol purification using a fixed bed
adsorption column. Int. J. Technol. 11: 1300.
Susilawati, Sihombing,
Y.A., Rahayu, S.U., Sembiring,
Y.Y.B., Waldiansyah, L. & Irma, M. 2023. Filter
material based on zeolite-activated charcoal from cocoa shells as ammonium
adsorbent in greywater treatment. South African Journal of Chemical
Engineering 43: 266-272.
https://doi.org/https://doi.org/10.1016/j.sajce.2022.11.006
Susilawati, Sihombing,
Y.A., Rahayu, S.U., Waldiansyah,
L. & Sembiring, Y.Y.B. 2022. The effectiveness of Pahae natural zeolite–cocoa shell activated charcoal nanofilter as a water adsorber in
bioethanol purification. ACS Omega 7(43): 38417-38425.
https://doi.org/10.1021/acsomega.2c03614
Susilawati, Nasruddin,
M.N., Sihombing, Y.A., Pakpahan,
S.N.Y. & Ferdiansyah, B. 2021. Preparation of Pahae natural zeolite nanoparticles using high energy
milling and its potential for bioethanol purification. Rasayan J. Chem. 14: 1265.
Susilawati, Nasruddin,
M.N., Kurniawan, C., Nainggolan, I. & Sihombing, Y.A. 2018. Ethanol purification using active
natural Pahae zeolite by adsorption distillation
method. J. Phys. Conf Ser. 1116: 032037.
Susilawati, Nasution, T.I., Zebua, F. & Nainggolan,
H. 2017. Hydrogen purification using natural Pahae zeolit and cocoa rind based filter. Int. J. Appl. Eng. Res. 12: 3914.
Syafalni, S., Abustan,
I., Brahmana, A., Zakaria, S.N.F. & Abdullah, R. 2013. Peat water treatment
using combination of cationic surfactant modified zeolite, granular activated
carbon, and limestone. Modern Applied Science 7(2): 39-49.
https://doi.org/10.5539/mas.v7n2p39
Utama, P.S., Olivia, M., Prawiranegara, B.A., Agusti,
I.D., Pinem, J.A., Darmayanti,
L. & Saputra, E. 2020. Peat water treatment by
adsorption using kaolin-based geopolymer. IOP Conference Series: Materials
Science and Engineering 845: 012008. https://doi.org/10.1088/1757-899X/845/1/012008
Vasconcelos, A.A., Len, T., de Oliveira, A.d.N., da Costa, A.A.F., da Silva Souza, A.R., da Costa,
C.E.F., Luque, R., da Rocha Filho, G.N., Noronha,
R.C.R. & do Nascimento, L.A.S. 2023. Zeolites: A theoretical and practical
approach with uses in (bio)chemical processes. Applied Sciences 13(3):
1897. https://doi.org/10.3390/app13031897
Wenten, I.G., Khoiruddin,
K., Wardani, A.K., Aryanti,
P.T.P., Astuti, D.I. & Komaladewi,
A.A.I.A.S. 2020. Preparation of antifouling polypropylene/ZnO composite hollow fiber membrane by dip-coating method
for peat water treatment. Journal of Water Process Engineering 34:
101158. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101158
Wibowo, E., Rokhmat,
M., Sutisna, Khairurrijal & Abdullah, M. 2017. Reduction of seawater salinity by natural zeolite
(Clinoptilolite): Adsorption isotherms, thermodynamics and kinetics. Desalination 409: 146-156. https://doi.org/https://doi.org/10.1016/j.desal.2017.01.026
Wösten, J.H.M., Clymans,
E., Page, S.E., Rieley, J.O. & Limin, S.H. 2008. Peat–water interrelationships in a
tropical peatland ecosystem in Southeast Asia. CATENA 73(2): 212-224.
https://doi.org/https://doi.org/10.1016/j.catena.2007.07.010
Xiao, G., Chen, X., Li, T., Wang, C., Cui,
Q. & Yue, Y. 2024. Eco-friendly synthesis and environmental impact
assessment of hierarchical Beta zeolite from kaolinite and recycled mother
liquor. Green Chemical Engineering 5(4): 501-510.
https://doi.org/https://doi.org/10.1016/j.gce.2024.01.002
Xu, J., Morris, P.J., Liu, J. & Holden,
J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a
meta-analysis. CATENA 160: 134-140.
https://doi.org/https://doi.org/10.1016/j.catena.2017.09.010
Zarrintaj, P., Mahmodi,
G., Manouchehri, S., Mashhadzadeh, A.H., Khodadadi, M., Servatan,
M., Ganjali, M.R., Azambre, B., Kim, S-J., Ramsey, J.D., Habibzadeh,
S., Saeb, M.R. & Mozafari, M. 2020. Zeolite in tissue engineering:
Opportunities and challenges. MedComm. 1(1): 5-34.
*Pengarang untuk surat-menyurat;
email: susilawati@usu.ac.id
|